A276034 a(n) is the number of decompositions of 2n into an unordered sum of two primes in A274987.
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 2, 1, 2, 2, 2, 1, 2, 1, 0, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 1, 2, 4, 3, 1, 5, 3, 2, 5, 1, 2, 2, 2, 5, 2, 3, 4, 5, 3, 2, 5, 2, 1, 4, 0, 1, 5, 3, 1, 3, 5, 4, 4, 3, 2, 4, 3, 3, 4, 2, 3, 7, 2, 2, 3, 2, 2, 2
Offset: 1
Examples
A274987 = {3, 5, 7, 11, 13, 17, 23, 31, 37, 53, 59, 61, 73, 79, 83, 89, 101, 103, 109, ...}. For n=3, 2n=6 = 3+3, one case of decomposition, so a(3)=1; for n=4, 2n=8 = 3+5, one case of decomposition, so a(4)=1; ... for n=17, 2n=34 = 3+31 = 11+23 = 17+17, three cases of decompositions, so a(17)=3.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
- Lei Zhou, List plot of the first 10000 terms of a(n).
Programs
-
Mathematica
p = 3; sp = {p}; a = Table[m = 2*n; l = Length[sp]; While[sp[[l]] < m, While[p = NextPrime[p]; cp = 2*3^(Floor[Log[3, 2*p - 1]]) - p; ! PrimeQ[cp]]; AppendTo[sp, p]; l++]; ct = 0; Do[If[(2*sp[[i]] <= m) && (MemberQ[sp, m - sp[[i]]]), ct++], {i, 1, l}]; ct, {n, 1, 87}]
Comments