cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276034 a(n) is the number of decompositions of 2n into an unordered sum of two primes in A274987.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 2, 1, 2, 2, 2, 1, 2, 1, 0, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 1, 2, 4, 3, 1, 5, 3, 2, 5, 1, 2, 2, 2, 5, 2, 3, 4, 5, 3, 2, 5, 2, 1, 4, 0, 1, 5, 3, 1, 3, 5, 4, 4, 3, 2, 4, 3, 3, 4, 2, 3, 7, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Lei Zhou, Nov 15 2016

Keywords

Comments

The two primes are allowed to be the same.
It is conjectured that the primes in A274987 (a subset of all primes) are sufficient to decomposite even numbers into two primes in A274987 when n > 958.
This sequence provides a very tight alternative of the Goldbach conjecture for all positive integers, in which indices of zero terms form a complete sequence {1, 2, 16, 26, 64, 97, 107, 122, 146, 167, 194, 391, 451, 496, 707, 856, 958}.
There is no more zero terms of a(n) tested up to n = 100000.

Examples

			A274987 = {3, 5, 7, 11, 13, 17, 23, 31, 37, 53, 59, 61, 73, 79, 83, 89, 101, 103, 109, ...}.
For n=3, 2n=6 = 3+3, one case of decomposition, so a(3)=1;
for n=4, 2n=8 = 3+5, one case of decomposition, so a(4)=1;
...
for n=17, 2n=34 = 3+31 = 11+23 = 17+17, three cases of decompositions, so a(17)=3.
		

Crossrefs

Programs

  • Mathematica
    p = 3; sp = {p}; a = Table[m = 2*n; l = Length[sp]; While[sp[[l]] < m, While[p = NextPrime[p]; cp = 2*3^(Floor[Log[3, 2*p - 1]]) - p; ! PrimeQ[cp]]; AppendTo[sp, p]; l++]; ct = 0; Do[If[(2*sp[[i]] <= m) && (MemberQ[sp, m - sp[[i]]]), ct++], {i, 1, l}]; ct, {n, 1, 87}]