A276046 Numbers k such that (26*10^k - 23)/3 is prime.
1, 2, 10, 16, 78, 97, 125, 138, 192, 242, 290, 373, 408, 467, 583, 892, 899, 1709, 1944, 2154, 3618, 5225, 8974, 9377, 12504, 20042, 49106, 63073, 92152, 147973
Offset: 1
Examples
2 is in this sequence because (26*10^2 - 23)/3 = 859 is prime. Initial terms and associated primes: a(1) = 1, 79; a(2) = 2, 859; a(3) = 10, 86666666659; a(4) = 16, 86666666666666659, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 86w59.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(26*10^# - 23)/3] &]
-
PARI
is(n)=ispseudoprime((26*10^n - 23)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(30) from Robert Price, Dec 19 2019
Comments