This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276048 #21 Sep 12 2016 17:15:40 %S A276048 0,2,9,2,625,1,117649,2,9,1,25937424601,1,23298085122481,1,1,2, %T A276048 48661191875666868481,1,104127350297911241532841,1,1,1, %U A276048 907846434775996175406740561329,1,625,1,9,1,88540901833145211536614766025207452637361,1 %N A276048 Sequence associated with the functional equation of the Riemann zeta zero spectrum (see formulas). %C A276048 The functional equation formula in the answer by Peter Humphries is for the Dirichlet eta function and corresponds to the second term in this sequence. This sequence corresponds to zeta function products over all the divisors. %H A276048 Peter Humphries, <a href="http://math.stackexchange.com/a/1901492/8530">What completes the Dirichlet generating function ΞΆ(s+c-1) where c is a constant?</a>, Math StackExchange. %H A276048 Peter Humphries, <a href="http://math.stackexchange.com/a/1895154/8530">What is the symmetric functional equation of the Dirichlet eta function?</a>, Math StackExchange. %F A276048 a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} mu(d)*d^(1 - s)*Sum_{d|n} mu(d)*d^(s)). %F A276048 a(n) = A014963(n)^(A014963(n)-1), n > 1. %F A276048 a(n) = A014963(n)^(-A120112(n)), n > 1. %F A276048 a(prime(n)) = A000169(prime(n)). %t A276048 Clear[s]; -Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(1 - (s))]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(s)], s -> 1], {n, 1, 30}]; Exp[%] %Y A276048 Cf. A000169, A014963, A120112, A230283, A230284. %K A276048 nonn %O A276048 1,2 %A A276048 _Mats Granvik_, Aug 17 2016