cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276051 a(n) is the number of top arches with length =1 for all semi meander solutions with n top arches.

This page as a plain text file.
%I A276051 #11 Dec 07 2018 04:56:40
%S A276051 1,2,4,10,28,80,244,732,2320,7172,23212,73228,240184,768932,2545568,
%T A276051 8240604,27468352,89699652,300579836,988463844
%N A276051 a(n) is the number of top arches with length =1 for all semi meander solutions with n top arches.
%F A276051 Conjectured formula for n>=3.
%F A276051 M(n)= number of semi meanders solutions for n top arches. A000682.
%F A276051 r(x)= number of top arches with no covering arch for solution x of M(n).
%F A276051 Example:      /\     r(x)=3
%F A276051          /\/\//\\
%F A276051 h(x)= number of top arches with length =1 for solution x of M(n).
%F A276051 Example:      /\
%F A276051          /\/\//\\    h(x)=3
%F A276051 i(x)= number of uncovered top arches with length =1 and in an internal position for solution x of M(n).  Example:()         /\   i(x)=1
%F A276051                                                 /\(/\)//\\
%F A276051 a(n+1)= sum of x=1 to M(n)for [r(x)*h(x)-i(x)] + 2*M(n)-2*M(n-1)
%F A276051 a(5)=(3*3-1)+(3*3-1)+(2*2-0)+(2*2-0)+2*4-2*2= 28.
%e A276051 a(4)=10       /\       /\      /\          /\
%e A276051          /\/\//\\     //\\    //\\/\/\    //\\
%e A276051                    /\///\\\              ///\\\/\.
%Y A276051 Cf. A000682.
%K A276051 nonn,more
%O A276051 1,2
%A A276051 _Roger Ford_, Aug 17 2016
%E A276051 a(11)-a(20) from _Andrew Howroyd_, Dec 07 2018