A276061 Sum of the asymmetry degrees of all compositions of n into parts congruent to 1 mod 3.
0, 0, 0, 0, 0, 2, 2, 4, 6, 10, 18, 28, 46, 74, 114, 184, 286, 448, 700, 1080, 1676, 2582, 3970, 6104, 9338, 14288, 21808, 33224, 50580, 76844, 116640, 176832, 267740, 405058, 612110, 924204, 1394266, 2101558, 3165406, 4764184, 7165530, 10770386, 16178378
Offset: 0
Examples
a(7) = 4 because the compositions of 7 with parts in {1,4,7,10,...} are 7, 4111, 1411, 1141, 1114, and 1111111, and the sum of their asymmetry degrees is 0+1+1+1+1+0.
References
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,0,-1,-1,-1,-2,1,0,1).
Crossrefs
Cf. A276060.
Programs
-
Maple
g := 2*z^5*(1-z^3)/((1+z)*(1-z+z^2)*(1+z-z^3)*(1-z-z^3)^2): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
-
Mathematica
Table[Total@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; Mod[a, 3] != 1]], 1]]], {n, 0, 36}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
-
PARI
concat(vector(5), Vec(2*x^5*(1-x^3)/((1+x)*(1-x+x^2)*(1+x-x^3)*(1-x-x^3)^2) + O(x^50))) \\ Colin Barker, Aug 28 2016
Formula
G.f.: g(z) = 2*z^5*(1-z^3)/((1+z)*(1-z+z^2)*(1+z-z^3)*(1-z-z^3)^2). In the more general situation of compositions into a[1]=1} z^(a[j]), we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))*(1-F(z))^2).
a(n) = Sum_{k>=0} k*A276060(n,k).
Comments