This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276092 #19 Aug 31 2016 09:58:01 %S A276092 1,2,18,11250,1323551250,34329510752434301250, %T A276092 799811863723341113907011901401250, %U A276092 38919798565076223182552300534870824616780123359001250,4052615498709835178737678586220586796222761283625319842830388618784835051250,3679152532021669595137666762315244807517735994898621013565758767014111825486079213219685771368099483111250 %N A276092 a(n) = Product_{i=1..n} prime(i)^(prime(i)-1), a(0)=1. %C A276092 Cumulative product of A036878 (after a(0)). - _Rick L. Shepherd_, Aug 23 2016 %F A276092 a(n) = Product_{i=1..n} prime(i)^(prime(i)-1). %F A276092 a(0) = 1; and for n >= 1, a(n) = a(n-1) * A000040(n)^(A000040(n)-1). %F A276092 a(n) = A276086(A057588(n)). %e A276092 For n=0 we have an empty product, thus a(0) = 1. %e A276092 For n=1, a(1) = 2^1. %e A276092 For n=2, a(2) = 2^1 * 3^2 = 18. %e A276092 For n=3, a(3) = 2^1 * 3^2 * 5^4 = 11250. %t A276092 Table[Product[Prime[i]^(Prime[i] - 1), {i, n}], {n, 0, 9}] (* _Michael De Vlieger_, Aug 31 2016 *) %o A276092 (Scheme) %o A276092 (define (A276092 n) (let outloop ((i n) (t 1)) (if (zero? i) t (let ((p (A000040 i))) (let inloop ((j (- p 1)) (t t)) (if (zero? j) (outloop (- i 1) t) (inloop (- j 1) (* t p)))))))) %o A276092 ;; Or as a recurrence: %o A276092 (definec (A276092 n) (if (zero? n) 1 (* (A276092 (- n 1)) (expt (A000040 n) (- (A000040 n) 1))))) %o A276092 (PARI) %o A276092 A276092(n) = prod(i=1, n, prime(i)^(prime(i) - 1)) \\ _Rick L. Shepherd_, Aug 23 2016 %Y A276092 Cf. A000040, A002110, A057588, A036878, A276086. %Y A276092 Subsequence of A048103. %K A276092 nonn %O A276092 0,2 %A A276092 _Antti Karttunen_, Aug 22 2016