This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276097 #23 Aug 25 2016 13:16:10 %S A276097 1,1,1,1,1,16,361,143641,20741472361,430214650013601071641, %T A276097 11567790319010747187536221088708755344001, %U A276097 370675271093071368960746074163948008803845834307486807769098691609909105887376 %N A276097 A nonlinear recurrence of order 5: a(1)=a(2)=a(3)=a(4)=a(5)=1; a(n)=(a(n-1)+a(n-2)+a(n-3)+a(n-4))^2/a(n-5). %C A276097 All terms are perfect squares. %H A276097 Seiichi Manyama, <a href="/A276097/b276097.txt">Table of n, a(n) for n = 1..15</a> %F A276097 a(n) = A072879(n)^2. %F A276097 a(n) = 25*a(n-1)*a(n-2)*a(n-3)*a(n-4) - 2a(n-1) - 2a(n-2) - 2a(n-3) - 2a(n-4) - a(n-5). %F A276097 a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4) = ((a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4))/5)^2. %t A276097 RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == 1, a[n] == (a[n-1] + a[n-2] + a[n-3] + a[n-4])^2 / a[n-5]}, a, {n, 15}] (* _Vincenzo Librandi_, Aug 21 2016 *) %o A276097 (Ruby) %o A276097 def A(m, n) %o A276097 a = Array.new(m, 1) %o A276097 ary = [1] %o A276097 while ary.size < n %o A276097 i = a[1..-1].inject(:+) %o A276097 j = i * i %o A276097 break if j % a[0] > 0 %o A276097 a = *a[1..-1], j / a[0] %o A276097 ary << a[0] %o A276097 end %o A276097 ary %o A276097 end %o A276097 def A276097(n) %o A276097 A(5, n) %o A276097 end %Y A276097 Cf. A072879, A072882, A276095. %K A276097 nonn %O A276097 1,6 %A A276097 _Seiichi Manyama_, Aug 18 2016