This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276108 #47 Nov 26 2024 18:11:11 %S A276108 1,65536,43046721,68719476736,152587890625,2821109907456, %T A276108 33232930569601,281474976710656,10000000000000000,45949729863572161, %U A276108 150094635296999121,184884258895036416,665416609183179841,2177953337809371136,6568408355712890625,18446744073709551616 %N A276108 Numbers expressible as perfect powers in a composite number of ways. %C A276108 Old title was "Values of A117453(n) such that A175066(n) is not a prime number." %C A276108 Terms are 1, 2^16, 3^16, 2^36, ... %C A276108 Numbers m^k, where m is not a perfect power and k is a composite number in A154893 or 0. - _Charlie Neder_, Mar 02 2019 %H A276108 Chai Wah Wu, <a href="/A276108/b276108.txt">Table of n, a(n) for n = 1..10000</a> %e A276108 65536 = 2^16 is a term because there are 4 corresponding ways that are 2^16, 4^8, 16^4, 256^2. %o A276108 (Python) %o A276108 from sympy import mobius, integer_nthroot, isprime, divisor_count %o A276108 def A276108(n): %o A276108 def bisection(f,kmin=0,kmax=1): %o A276108 while f(kmax) > kmax: kmax <<= 1 %o A276108 while kmax-kmin > 1: %o A276108 kmid = kmax+kmin>>1 %o A276108 if f(kmid) <= kmid: %o A276108 kmax = kmid %o A276108 else: %o A276108 kmin = kmid %o A276108 return kmax %o A276108 def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,i*k)[0]-1 for i in range(2,(x//k).bit_length()) if isprime(i) or isprime(divisor_count(i)-1))) for k in range(1,x.bit_length()))) %o A276108 return bisection(f,n,n) # _Chai Wah Wu_, Nov 25 2024 %Y A276108 Cf. A117453, A154893, A175066. %K A276108 nonn %O A276108 1,2 %A A276108 _Altug Alkan_, Aug 27 2016 %E A276108 New title from _Charlie Neder_, Mar 04 2019 %E A276108 a(5)-a(16) from _Chai Wah Wu_, Nov 25 2024