cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276109 The number of non-isomorphic drawings of the complete graph K_n such that any two edges intersect at most once (a.k.a. "good drawings" or "simple topological graphs").

This page as a plain text file.
%I A276109 #15 Sep 05 2016 10:49:47
%S A276109 1,2,5,121,46999,502090394
%N A276109 The number of non-isomorphic drawings of the complete graph K_n such that any two edges intersect at most once (a.k.a. "good drawings" or "simple topological graphs").
%D A276109 H.-D. O. F. Gronau and H. Harborth, Numbers of nonisomorphic drawings for small graphs, Congressus Numerantium, 71:105-114, 1990.
%D A276109 H. Harborth and I. Mengersen, Drawings of the complete graph with maximum number of crossings, Congressus Numerantium, 88:225-228, 1992.
%H A276109 B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pammer, A. Pilz, P. Ramos, G. Salazar, and B. Vogtenhuber, <a href="http://www.ist.tugraz.at/cpgg/downloadables/aafhpprsv-agdsc-15.pdf">All Good Drawings of Small Complete Graphs</a>, In Proc. 31st European Workshop on Computational Geometry EuroCG '15, pages 57-60, Ljubljana, Slovenia, 2015.
%H A276109 J. Kynčl, <a href="http://dx.doi.org/10.1016/j.ejc.2009.03.005">Enumeration of simple complete topological graphs, European Journal of Combinatorics</a>, 30(7):1676-1685, 2009.
%Y A276109 Cf. A000241.
%Y A276109 Coincides with A276110 for n <= 5.
%K A276109 nonn,more
%O A276109 3,2
%A A276109 _Manfred Scheucher_, Aug 18 2016