cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276111 Decimal expansion of Pi truncated to numbers such that the partial sums of the decimal digits are perfect squares.

This page as a plain text file.
%I A276111 #16 May 24 2019 17:09:31
%S A276111 31,3141,3141592,314159265,31415926535897932384626433
%N A276111 Decimal expansion of Pi truncated to numbers such that the partial sums of the decimal digits are perfect squares.
%C A276111 Members of A011545.
%C A276111 a(6)= 3141592653...647093 contains 123 digits;
%C A276111 a(7)= 3141592653...128475 contains  226 digits;
%C A276111 a(8)= 3141592653...786783 contains 238 digits;
%C A276111 a(9)= 3141592653...789259 contains 357 digits;
%C A276111 a(10)= 3141592653...892590 contains 358 digits;
%C A276111 a(11)= 3141592653...261179 contains 441 digits.
%C A276111 The corresponding partial sums are 4, 9, 25, 36, 121,...(subsequence of A046974).
%C A276111 The corresponding square roots are in the following sequence b(n): 2, 3, 5, 6, 11, 24, 32, 33, 40, 44, 52, 62, 65, 66, 89, 100, 101, 110, 115, 116, 121, 135, 142, 144, 159, 161, 173, 177, 187, 190, 196, 197,...
%C A276111 The primes in b(n) are 2, 3, 5, 11, 89, 101, 173, 197, 227,...
%C A276111 The squares in b(n) are 100, 121, 144, 196, 256, 289, 324, 729, 784,..
%H A276111 Harvey P. Dale, <a href="/A276111/b276111.txt">Table of n, a(n) for n = 1..17</a>
%t A276111 L=Rest@FoldList[Plus,0,First@RealDigits[Pi,10,500]];Do[If[IntegerQ[Sqrt[L[[n]]]],Print[FromDigits[First@RealDigits[Pi,10,n]]]],{n,500}]
%t A276111 Module[{nn=50,pid,ac,po},pid=RealDigits[Pi,10,nn][[1]];ac=Accumulate[pid];po=Flatten[Position[ac,_?(IntegerQ[Sqrt[#]]&)]];FromDigits/@ Table[ Take[ pid,k],{k,po}]] (* _Harvey P. Dale_, May 24 2019 *)
%Y A276111 Cf. A000796, A011545, A046974.
%K A276111 nonn,base
%O A276111 1,1
%A A276111 _Michel Lagneau_, Aug 18 2016