cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276114 Numbers k such that (101*10^k - 17)/3 is prime.

Original entry on oeis.org

1, 2, 15, 17, 26, 41, 56, 59, 121, 137, 224, 506, 611, 836, 937, 1079, 1829, 2315, 2666, 2879, 6661, 7167, 14021, 15459, 32924, 73346, 176815, 177302
Offset: 1

Views

Author

Robert Price, Aug 18 2016

Keywords

Comments

Numbers k such that the digits 33 followed by k-1 occurrences of the digit 6 followed by the digit 1 is prime (see Example section).
a(29) > 2*10^5.

Examples

			2 is in this sequence because (101*10^2 - 17)/3 = 3361 is prime.
Initial terms and associated primes:
a(1) = 1, 331;
a(2) = 2, 3361;
a(3) = 15, 33666666666666661;
a(4) = 17, 3366666666666666661;
a(5) = 26, 3366666666666666666666666661, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(101*10^# - 17)/3] &]
  • PARI
    is(n)=ispseudoprime((101*10^n  - 17)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(27)-a(28) from Robert Price, Feb 05 2020