This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276119 #16 Aug 22 2016 15:12:21 %S A276119 2,2,3,3,5,5,4,6,5,11,9,12,11,12,17,17,16,19,16,18,24,22,17,22,26,32, %T A276119 36,33,26,35,39,45,36,36,38,52,42,51,40,48,55,51,67,62,64,66,66,72,77, %U A276119 67,71,73,96,75,69,109,83,90,86,100,101,95,91,112,111 %N A276119 Number of twin prime pairs between n^3 and (n+1)^3. %C A276119 Is there a twin prime pair between all consecutive cubes? %H A276119 Charles R Greathouse IV, <a href="/A276119/b276119.txt">Table of n, a(n) for n = 1..10000</a> %e A276119 a(9)=5 because there are 5 twin prime pairs between 9^3 and 10^3, i.e., {809, 811}, {821, 823}, {827, 829}, {857, 859}, {881, 883}. %p A276119 N:= 100: # to get a(1) .. a(N) %p A276119 Primes:= select(isprime, {seq(x,x=3..(N+1)^3,2)}): %p A276119 Tprimes:= Primes intersect map(t -> t-2,Primes): %p A276119 seq(nops(select(t -> t > n^3 and t < (n+1)^3-2, Tprimes)),n=1..N); # _Robert Israel_, Aug 21 2016 %o A276119 (PARI) a(n)=my(p=nextprime(n^3),s); forprime(q=p+1, (n+1)^3, if(q-p==2, s++); p=q); s \\ _Charles R Greathouse IV_, Aug 21 2016 %o A276119 (Perl) use ntheory ":all"; sub a276119 { my $n = shift; twin_prime_count($n**3,($n+1)**3); } # _Dana Jacobsen_, Aug 22 2016 %Y A276119 Cf. A000578, A001359, A006512, A060199. %K A276119 nonn %O A276119 1,1 %A A276119 _G. L. Honaker, Jr._, Aug 21 2016