cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276135 Ben Ames Williams's Monkey and Coconuts Problem.

This page as a plain text file.
%I A276135 #39 Sep 08 2022 08:46:17
%S A276135 0,0,1,20,51,2604,6665,720600,1864135,348678440,909090909,
%T A276135 261535698060,685853880635,281241170407092,740800455037201,
%U A276135 410525522232055664,1085102592571150095,781282469559318055056,2070863582910344082917,1879498672877297909667780,4993219047619047619047619,5577014881186619679500164220
%N A276135 Ben Ames Williams's Monkey and Coconuts Problem.
%C A276135 In Ben Ames Williams's coconuts problem, a pile of coconuts remains the next day that is divisible by n sailors. Integers in the sequence multiplied by (n^2)-n determine the size of the divisible pile.
%H A276135 Mark Richardson, <a href="/A276135/b276135.txt">Table of n, a(n) for n = 1..101</a>
%H A276135 M. B. Richardson, <a href="https://dx.doi.org/10.15200/winn.147175.52128">A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem</a>, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128
%F A276135 a(n) = ((n-1)^(n-1) - 1)/n, if n is odd.
%F A276135 a(n) = ((n-1)^n - 1)/n, if n is even.
%F A276135 a(n) = ((n-1)^(n - 1/2 + (-1)^n/2) - 1)/n = (n^A052928(n) - 1)/n. - _Omar E. Pol_, Aug 24 2016
%p A276135 seq(((n-1)^(n-1/2+(-1)^n/2)-1)/n,n=1..30); # _Robert Israel_, Aug 26 2016
%t A276135 Join[{0}, Table[((n - 1)^(n - 1/2 + (-1)^n/2) - 1)/n, {n, 2, 30}]] (* _Bruno Berselli_, Aug 26 2016 *)
%o A276135 (PARI) a(n) = ((n-1)^(n-1/2+(-1)^n/2)-1)/n \\ _Felix Fröhlich_, Aug 26 2016
%o A276135 (Magma) [((n-1)^(n-1 div 2 +(-1)^n div 2)-1) div n: n in [1..25]]; // _Vincenzo Librandi_, May 15 2019
%Y A276135 Cf. A002021, A052928.
%K A276135 nonn,easy
%O A276135 1,4
%A A276135 _Mark Richardson_, Aug 21 2016