cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).

This page as a plain text file.
%I A276154 #28 Mar 18 2021 23:39:41
%S A276154 0,2,6,8,12,14,30,32,36,38,42,44,60,62,66,68,72,74,90,92,96,98,102,
%T A276154 104,120,122,126,128,132,134,210,212,216,218,222,224,240,242,246,248,
%U A276154 252,254,270,272,276,278,282,284,300,302,306,308,312,314,330,332,336,338,342,344,420,422,426,428,432,434,450,452,456,458,462,464,480,482,486,488
%N A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).
%H A276154 Antti Karttunen, <a href="/A276154/b276154.txt">Table of n, a(n) for n = 0..30029</a>
%H A276154 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A276154 a(0) = 0; for n >= 1, a(n) = A276152(n) + a(A276151(n)).
%F A276154 a(n) = A276085(A003961(A276086(n))). - _Antti Karttunen_, Mar 15 2021
%e A276154    n   A049345  with one zero           converted back
%e A276154                 appended to the right   to decimal = a(n)
%e A276154 ---------------------------------------------------------
%e A276154    0       0            00                     0
%e A276154    1       1            10                     2
%e A276154    2      10           100                     6
%e A276154    3      11           110                     8
%e A276154    4      20           200                    12
%e A276154    5      21           210                    14
%e A276154    6     100          1000                    30
%e A276154    7     101          1010                    32
%e A276154    8     110          1100                    36
%e A276154    9     111          1110                    38
%e A276154   10     120          1200                    42
%e A276154   11     121          1210                    44
%e A276154   12     200          2000                    60
%e A276154   13     201          2010                    62
%e A276154   14     210          2100                    66
%e A276154   15     211          2110                    68
%e A276154   16     220          2200                    72
%t A276154 nn = 75; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[#] <= nn &]]; Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}] (* Version 10.2, or *)
%t A276154 f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, 75}] (* _Michael De Vlieger_, Aug 26 2016 *)
%o A276154 (PARI) A276154(n) = A276085(A003961(A276086(n))); \\ _Antti Karttunen_, Mar 15 2021
%o A276154 (PARI)
%o A276154 A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
%o A276154 A276152(n) = { my(s=1); forprime(p=2, , if(n%p, return(s*p), s *= p)); };
%o A276154 A276154(n) = if(!n,n,(A276152(n) + A276154(A276151(n)))); \\ _Antti Karttunen_, Mar 15 2021
%o A276154 (Scheme) (definec (A276154 n) (if (zero? n) n (+ (A276152 n) (A276154 (A276151 n)))))
%Y A276154 Complement: A276155.
%Y A276154 Cf. A002110, A003961, A049345, A276085, A276086, A276151, A276152, A286629 [= a(A061720(n-1))], A324384 [= gcd(n, a(n))], A323879, A328770 (a subsequence).
%Y A276154 Cf. also A276156, A328461, A328464.
%Y A276154 Dispersion array and its transpose: A276943, A276945, with primorials divided out: A286623, A286625.
%Y A276154 Analogous to A153880.
%K A276154 nonn,base
%O A276154 0,2
%A A276154 _Antti Karttunen_, Aug 24 2016