cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276169 Primes that remain primes after adding to them their largest missing digit.

This page as a plain text file.
%I A276169 #20 Sep 03 2016 23:56:47
%S A276169 2,29,59,149,191,269,359,449,479,491,569,593,599,719,911,929,1109,
%T A276169 1193,1229,1319,1439,1559,1619,1979,1987,2129,2339,2459,2549,2609,
%U A276169 2699,2897,2909,2963,3209,3299,3449,3491,3539,3719,3911,3923,4019,4049,4091,4349,4649,4793,4943,4987,5099,5399,5519,5639,5693,5897
%N A276169 Primes that remain primes after adding to them their largest missing digit.
%C A276169 Resulting primes are: 11, 37, 67, 157, 199, 277, 367, 457, 487, 499, 577, 601, 607, 727, 919, 937, 1117, 1201, 1237, 1327, 1447, 1567, 1627, 1987, 1993, 2137.
%C A276169 If n > 2, the largest missing digit must be even, so in particular n contains digit 9. - _Robert Israel_, Sep 01 2016
%C A276169 Pandigital primes not included. - _Zak Seidov_, Sep 02 2016
%H A276169 Robert Israel, <a href="/A276169/b276169.txt">Table of n, a(n) for n = 1..10000</a>
%e A276169 2+9=11, 29+8=37, 59+8=67 all primes.
%p A276169 lmd:= n -> max({$1..9} minus convert(convert(n,base,10),set)):
%p A276169 select(t -> isprime(t) and isprime(t + lmd(t)), [2,seq(i,i=3..10000,2)]); # _Robert Israel_, Sep 01 2016
%t A276169 Select[Prime[Range[1000]],PrimeQ[#+Complement[Range[9],IntegerDigits[#]][[-1]]]&]
%o A276169 (PARI) is(n) = {my(s); if(isprime(n), s = setminus(s=Set(vector(9, i, i)), Set(digits(n))); if(#s>0, n+=s[#s], return(0)); return(isprime(n)))} \\ _David A. Corneth_, Aug 23 2016
%Y A276169 Cf. A116667 (largest missing digit).
%K A276169 nonn,base
%O A276169 1,1
%A A276169 _Zak Seidov_ and _Eric Angelini_, Aug 22 2016