This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276169 #20 Sep 03 2016 23:56:47 %S A276169 2,29,59,149,191,269,359,449,479,491,569,593,599,719,911,929,1109, %T A276169 1193,1229,1319,1439,1559,1619,1979,1987,2129,2339,2459,2549,2609, %U A276169 2699,2897,2909,2963,3209,3299,3449,3491,3539,3719,3911,3923,4019,4049,4091,4349,4649,4793,4943,4987,5099,5399,5519,5639,5693,5897 %N A276169 Primes that remain primes after adding to them their largest missing digit. %C A276169 Resulting primes are: 11, 37, 67, 157, 199, 277, 367, 457, 487, 499, 577, 601, 607, 727, 919, 937, 1117, 1201, 1237, 1327, 1447, 1567, 1627, 1987, 1993, 2137. %C A276169 If n > 2, the largest missing digit must be even, so in particular n contains digit 9. - _Robert Israel_, Sep 01 2016 %C A276169 Pandigital primes not included. - _Zak Seidov_, Sep 02 2016 %H A276169 Robert Israel, <a href="/A276169/b276169.txt">Table of n, a(n) for n = 1..10000</a> %e A276169 2+9=11, 29+8=37, 59+8=67 all primes. %p A276169 lmd:= n -> max({$1..9} minus convert(convert(n,base,10),set)): %p A276169 select(t -> isprime(t) and isprime(t + lmd(t)), [2,seq(i,i=3..10000,2)]); # _Robert Israel_, Sep 01 2016 %t A276169 Select[Prime[Range[1000]],PrimeQ[#+Complement[Range[9],IntegerDigits[#]][[-1]]]&] %o A276169 (PARI) is(n) = {my(s); if(isprime(n), s = setminus(s=Set(vector(9, i, i)), Set(digits(n))); if(#s>0, n+=s[#s], return(0)); return(isprime(n)))} \\ _David A. Corneth_, Aug 23 2016 %Y A276169 Cf. A116667 (largest missing digit). %K A276169 nonn,base %O A276169 1,1 %A A276169 _Zak Seidov_ and _Eric Angelini_, Aug 22 2016