cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276170 Let n have j digits {d_j, d_(j-1), ..., d_2, d_1}. Sequence lists numbers n such that n = d_j^b_j + d_(j-1)^b_(j-1) + ... + d_2^b_2 + d_1^b_1 for some permutation {b_j, b_(j-1), ..., b_2, b_1} of the digits.

This page as a plain text file.
%I A276170 #8 Aug 23 2016 13:15:26
%S A276170 1,1364,3435,4155,4316,4355,17463,48625,63725,78215,117693,136775,
%T A276170 137456,137529,164726,184746,196753,264719,326617,326671,397612,
%U A276170 423858,516974,637395,652812,653285,653957,687523,834272,936627,1374962,1617349,1679812,1683397,1683514
%N A276170 Let n have j digits {d_j, d_(j-1), ..., d_2, d_1}. Sequence lists numbers n such that n = d_j^b_j + d_(j-1)^b_(j-1) + ... + d_2^b_2 + d_1^b_1 for some permutation {b_j, b_(j-1), ..., b_2, b_1} of the digits.
%C A276170 0^0 is not admitted.
%C A276170 652812 is the first number with two essentially different permutations:
%C A276170 6^1 + 5^8 + 2^5 + 8^6 + 1^2 + 2^2 = 6^2 + 5^8 + 2^1 + 8^6 + 1^5 + 2^2 = 652812.
%H A276170 Paolo P. Lava, <a href="/A276170/a276170.txt">First 100 terms with applicable permutations</a>
%e A276170 One of the permutations of {1,3,6,4} is {6,1,4,3} and 1^6+3^1+6^4+4^3 = 1364.
%p A276170 with(combinat); P:= proc(q) local a,b,c,d,j,k,ok,n;
%p A276170 for n from 1 to q do ok:=1; d:=ilog10(n)+1; a:=convert(n,base,10); b:=permute(a,d);
%p A276170 for k from 1 to nops(b) do c:=0; for j from 1 to d do
%p A276170 if a[j]=0 and b[k][j]=0 then ok:=0; break; else c:=c+a[j]^b[k][j];  fi; od;
%p A276170 if ok=1 then if c=n then print(n); break; fi; fi; od; od; end: P(10^6);
%Y A276170 Cf. A046253, A166623.
%K A276170 nonn,base,fini,easy
%O A276170 1,2
%A A276170 _Paolo P. Lava_, Aug 23 2016