A276241 Let n have j digits {d_j, d_(j-1), ..., d_2, d_1}. Sequence lists numbers n such that R(n) = d_j^b_j + d_(j-1)^b_(j-1) + ... + d_2^b_2 + d_1^b_1 for some permutation {b_j, b_(j-1), ..., b_2, b_1} of the digits, where R(n) is the digits reverse of n.
1, 10, 4631, 5343, 5514, 5534, 6134, 36471, 45130, 51287, 52684, 52736, 85200, 176623, 216793, 218256, 272438, 325786, 357691, 396711, 479615, 512870, 577631, 582356, 593736, 627461, 647481, 654731, 716623, 726639, 759356, 858324, 917462, 925731, 945630, 1075785
Offset: 1
Examples
One of the permutations of {4,6,3,1} is {3,4,1,6} and 4^3 + 6^4 + 3^1 + 1^6 = 1364 = R(4631).
Links
- Paolo P. Lava, First 100 terms with applicable permutations
Programs
-
Maple
with(combinat): R:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:= proc(q) local a,b,c,d,i,j,k,n,ok,x; for n from 1 to q do i:=R(n); x:=convert(n,base,10); d:=ilog10(n)+1; b:=permute(x,d); a:={}; ok:=1; for k from 1 to nops(x) do a:={op(a),x{d-k+1}}; od; for k from 1 to nops(b) do c:=0; for j from 1 to d do if a{j}=0 and b{k}{j}=0 then ok:=0; break; else c:=c+a{j}^b{k}{j}; fi; od; if ok=1 then if i=c then print(n); break; fi; fi; od; od; end: P(10^12);
Comments