This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276182 #19 Mar 22 2025 13:13:03 %S A276182 22,23,26,28,29,30,31,33,35,37,39,40,41,46,47,48,50,59,71 %N A276182 Numbers N such that the modular curve X_0(N) is hyperelliptic. %C A276182 "The only case where the hyperelliptic involution is not defined by an element of SL(2, R) is N=37." %C A276182 "For N = 40, 48 the hyperelliptic involution v is not of Atkin-Lehner type. The remaining sixteen values are listed in the table below, together with their genera and hyperelliptic involutions v." (see Ogg link) %C A276182 n N g v %C A276182 1 22 2 11 %C A276182 2 23 2 23 %C A276182 3 26 2 26 %C A276182 4 28 2 7 %C A276182 5 29 2 29 %C A276182 6 30 3 15 %C A276182 7 31 2 31 %C A276182 8 33 3 11 %C A276182 9 35 3 35 %C A276182 10 39 3 39 %C A276182 11 41 3 41 %C A276182 12 46 5 23 %C A276182 13 47 4 47 %C A276182 14 50 2 50 %C A276182 15 59 5 59 %C A276182 16 71 6 71 %D A276182 J. S. Balakrishnan, B. Mazur, and N. Dogra, Ogg's torsion conjecture: fifty years later, Bull. Amer. Math. Soc., 62:2 (2025), 235-268. %H A276182 Andrew P. Ogg, <a href="http://www.numdam.org/item?id=BSMF_1974__102__449_0">Hyperelliptic modular curves</a>, Bulletin de la S. M. F., 102 (1974), p. 449-462. %Y A276182 Cf. A001617, A260990. %K A276182 nonn,fini,full %O A276182 1,1 %A A276182 _Gheorghe Coserea_, Oct 17 2016