This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276185 #16 Nov 05 2016 12:58:39 %S A276185 42,46,52,57,62,67,68,69,72,73,74,77,80,87,91,98,103,107,111,121,125, %T A276185 143,167,191 %N A276185 Numbers n such that A276183(n) = 2. %H A276185 Harvey Cohn, <a href="https://doi.org/10.1090/S0025-5718-1988-0935079-4">Fricke's Two-Valued Modular Equations</a>, Math. Comp. 51 (1988), 787-807. %o A276185 (PARI) %o A276185 A000003(n) = qfbclassno(-4*n); %o A276185 A000089(n) = { %o A276185 if (n%4 == 0 || n%4 == 3, return(0)); %o A276185 if (n%2 == 0, n \= 2); %o A276185 my(f = factor(n), fsz = matsize(f)[1]); %o A276185 prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); %o A276185 }; %o A276185 A000086(n) = { %o A276185 if (n%9 == 0 || n%3 == 2, return(0)); %o A276185 if (n%3 == 0, n \= 3); %o A276185 my(f = factor(n), fsz = matsize(f)[1]); %o A276185 prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); %o A276185 }; %o A276185 A001615(n) = { %o A276185 my(f = factor(n), fsz = matsize(f)[1], %o A276185 g = prod(k=1, fsz, (f[k, 1]+1)), %o A276185 h = prod(k=1, fsz, f[k, 1])); %o A276185 return((n*g)\h); %o A276185 }; %o A276185 A001616(n) = { %o A276185 my(f = factor(n), fsz = matsize(f)[1]); %o A276185 prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); %o A276185 }; %o A276185 A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; %o A276185 A276183(n) = { %o A276185 my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3)); %o A276185 if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12); %o A276185 }; %o A276185 Vec(select(x->x==2, vector(500, n, A276183(n)), 1)) %Y A276185 Cf. A276183. %K A276185 nonn,fini,full %O A276185 1,1 %A A276185 _Gheorghe Coserea_, Oct 22 2016