This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276186 #17 Nov 05 2016 12:58:32 %S A276186 58,60,66,76,85,86,96,97,99,100,104,109,113,127,128,139,149,151,169, %T A276186 179,239 %N A276186 Numbers n such that A276183(n) = 3. %H A276186 Harvey Cohn, <a href="https://doi.org/10.1090/S0025-5718-1988-0935079-4">Fricke's Two-Valued Modular Equations</a>, Math. Comp. 51 (1988), 787-807. %o A276186 (PARI) %o A276186 A000003(n) = qfbclassno(-4*n); %o A276186 A000089(n) = { %o A276186 if (n%4 == 0 || n%4 == 3, return(0)); %o A276186 if (n%2 == 0, n \= 2); %o A276186 my(f = factor(n), fsz = matsize(f)[1]); %o A276186 prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); %o A276186 }; %o A276186 A000086(n) = { %o A276186 if (n%9 == 0 || n%3 == 2, return(0)); %o A276186 if (n%3 == 0, n \= 3); %o A276186 my(f = factor(n), fsz = matsize(f)[1]); %o A276186 prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); %o A276186 }; %o A276186 A001615(n) = { %o A276186 my(f = factor(n), fsz = matsize(f)[1], %o A276186 g = prod(k=1, fsz, (f[k, 1]+1)), %o A276186 h = prod(k=1, fsz, f[k, 1])); %o A276186 return((n*g)\h); %o A276186 }; %o A276186 A001616(n) = { %o A276186 my(f = factor(n), fsz = matsize(f)[1]); %o A276186 prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); %o A276186 }; %o A276186 A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; %o A276186 A276183(n) = { %o A276186 my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3)); %o A276186 if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12); %o A276186 }; %o A276186 Vec(select(x->x==3, vector(500, n, A276183(n)), 1)) %Y A276186 Cf. A276183. %K A276186 nonn,fini,full %O A276186 1,1 %A A276186 _Gheorghe Coserea_, Oct 22 2016