A276188 Numbers k > 1 such that the number of odd divisors of k-1 is odd and is equal to the number of odd divisors of k+1.
3, 99, 577, 3363
Offset: 1
Examples
99 is in this sequence because there are 3 odd divisors 1, 7 and 49 of 98 and there are 3 odd divisors 1, 5 and 25 of 100, and 3 is odd.
Programs
-
Magma
[n: n in [2..100000] | NumberOfDivisors(2*(n-1))- NumberOfDivisors(n-1) eq NumberOfDivisors(2*(n+1))-NumberOfDivisors(n+1) and ((NumberOfDivisors(2*(n+1))- NumberOfDivisors(n+1)) mod 2) eq 1 ];
-
Mathematica
odo[n_]:=Module[{c=Select[Divisors[n],OddQ]},If[OddQ[Length[c]],Length[c],0]]; Flatten[ Position[ Partition[Array[odo,3500],3,1],?(AllTrue[{#[[1]],#[[3]]},OddQ]&&#[[1]]==#[[3]]&),1,Heads->False]]+1 (* _Harvey P. Dale, Apr 07 2023 *)
Comments