This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276194 #58 Jan 13 2019 03:09:29 %S A276194 5,9,17,23,27,29,33,39,43,45,51,53,57,65,71,75,77,83,85,89,95,99,101, %T A276194 105,111,113,119,123,125,129,135,139,141,147,149,153,159,163,165,169, %U A276194 175,177,183,187,189,195,197,201,207,209,215,219,221,225,231,235,237 %N A276194 Odd numbers whose binary representation contains an even number of 1's and at least one 0. %H A276194 Lei Zhou, <a href="/A276194/b276194.txt">Table of n, a(n) for n = 1..10000</a> %H A276194 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A276194 a(2^n - floor(n/2)) = 4*2^n + 1, for all n >= 0. - _Gheorghe Coserea_, Oct 24 2016 %e A276194 Binary expansions of odd integers in decimal and binary forms are as follows: %e A276194 1 -> 1, no; %e A276194 3 -> 11, no; %e A276194 5 -> 101, yes, so a(1)=5; %e A276194 7 -> 111, no; %e A276194 9 -> 1001, yes so a(2)=9; %e A276194 11 -> 1011, no; %e A276194 13 -> 1101, no; %e A276194 15 -> 1111, no; %e A276194 17 -> 10001, yes so a(3)=17. %t A276194 BNDigits[m_Integer] := %t A276194 Module[{n = m, d, t = {}}, %t A276194 While[n > 0, d = Mod[n, 2]; PrependTo[t, d]; n = (n - d)/2]; t]; %t A276194 c = 1; %t A276194 Table[While[c = c + 2; d = BNDigits[c]; ld = Length[d]; %t A276194 c1 = Total[d]; ! (EvenQ[c1] && (c1 < ld))]; c, {n, 1, 57}] %o A276194 (PARI) isok(n) = my(b=binary(n)); (n % 2) && (vecmin(b)==0) && !(vecsum(b) % 2); \\ _Michel Marcus_, Oct 21 2016 %o A276194 (PARI) %o A276194 seq(N) = { %o A276194 my(bag = List(), cnt = 0, n = 1); %o A276194 while(cnt < N, %o A276194 if (hammingweight(n)%2 == 0 && hammingweight(n+1) > 1, %o A276194 listput(bag, n); cnt++); %o A276194 n += 2); %o A276194 return(Vec(bag)); %o A276194 }; %o A276194 seq(57) \\ _Gheorghe Coserea_, Oct 25 2016 %Y A276194 Cf. A005408. %Y A276194 Intersection of A129771 and A062289. %K A276194 nonn,base %O A276194 1,1 %A A276194 _Lei Zhou_, Oct 20 2016