cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276195 Smallest prime >= decimal expansion of Pi truncated to n places (A011545).

This page as a plain text file.
%I A276195 #12 Feb 16 2025 08:33:36
%S A276195 3,31,317,3163,31469,314159,3141601,31415971,314159311,3141592661,
%T A276195 31415926541,314159265359,3141592653601,31415926535933,
%U A276195 314159265359057,3141592653589861,31415926535897999,314159265358979347,3141592653589793239,31415926535897932429,314159265358979323861
%N A276195 Smallest prime >= decimal expansion of Pi truncated to n places (A011545).
%H A276195 Harvey P. Dale, <a href="/A276195/b276195.txt">Table of n, a(n) for n = 0..100</a>
%H A276195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NextPrime.html">Next Prime</a>
%H A276195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi</a> and <a href="https://mathworld.wolfram.com/PiDigits.html">Pi Digits</a>
%H A276195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi-Prime.html">Pi-Prime</a>
%H A276195 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>
%H A276195 <a href="/index/Con#constant_primes">Index entries related to "constant primes"</a>
%F A276195 a(n) = A007918(A011545(n)).
%F A276195 a(n) = A000040(A000720(A011545(n)-1)+1).
%F A276195 a(A060421(n)-1) = A005042(n).
%e A276195 a(6) = 3141601, since this is the smallest prime >= floor(Pi*10^6) = 3141592.
%e A276195 Pi = 3.1415926535897932384626433832795028841971…
%t A276195 Table[NextPrime[Floor[Pi 10^n] - 1], {n, 0, 20}]
%t A276195 Module[{nn=30,pid},pid=RealDigits[Pi,10,nn][[1]];Table[NextPrime[FromDigits[Take[pid,n]]-1],{n,nn}]] (* _Harvey P. Dale_, Mar 01 2024 *)
%Y A276195 Cf. A000040, A000720, A000796, A005042, A007918, A011545, A060421.
%K A276195 nonn,base
%O A276195 0,1
%A A276195 _Ilya Gutkovskiy_, Aug 24 2016