A276204 a(0) = a(1) = 0. For n>1 a(n) is the smallest nonnegative integer such that there is no arithmetic progression k,m,n (of length 3) such that a(k)+a(m) = a(n).
0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0
Offset: 0
Examples
For n = 6 we have that: a(6)>0, because a(0)+a(3)=0 and 0,3,6 is an arithmetic progression. a(6)>1, because a(4)+a(5)=0 and 4,5,6 is an arithmetic progression. There is no such arithmetic progression k,m,6 that a(k)+a(m) = 2, so a(6) = 2.
Links
- Michal Urbanski, Table of n, a(n) for n = 0..199999
Comments