cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276205 a(0) = a(2) = a(3) = 0. For n>2 a(n) is the smallest nonnegative integer such that there is no arithmetic progression j,k,m,n (of length 4) such that a(j)+a(k)+a(m) = a(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 3, 0, 0, 0, 4, 0, 1, 2, 2, 3, 1, 4, 0, 0, 1, 0, 0, 0, 5, 3, 0, 7, 1, 0, 4, 2, 4, 2, 3, 5, 1, 1, 4, 1, 3, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 9, 2, 8, 10, 0, 4, 0, 0, 0, 2, 1, 7, 13, 4, 12, 4, 6, 7, 4, 4, 2, 0, 10, 2, 2, 1, 3, 1, 0, 0, 0, 12, 0, 9, 1, 0, 5, 2, 1, 17, 0, 3, 5, 0, 1, 1, 0, 0, 8, 3, 0, 0, 0, 15, 12, 9, 10, 11, 1, 5
Offset: 0

Views

Author

Michal Urbanski, Aug 24 2016

Keywords

Comments

This sequence, unlike A276204 (defined similarly) is seemingly irregular.
a(n) <= n/3. - Robert Israel, Aug 24 2016
The graph (and the definition) are reminiscent of A229037. - N. J. A. Sloane, Aug 29 2016

Examples

			For n = 6 we have that:
a(6)>0, because a(0)+a(2)+a(4)=0 and 0,2,4,6 is an arithmetic progression.
a(6)>1, because a(3)+a(4)+a(5)=1 and 3,4,5,6 is an arithmetic progression.
there is no such arithmetic progression j,k,m,6 that a(j)+a(k)+a(m)=2, so a(6) = 2.
		

Crossrefs

Cf. A276204 (length 3), A276206 (length 5), A276207 (any length).
Cf. also A229037.

Programs

  • Maple
    for i from 0 to 2 do A[i]:= 0 od:
    for n from 3 to 200 do
      Forbid:= {seq(A[n-d]+A[n-2*d]+A[n-3*d],d=1..floor(n/3))};
      A[n]:= min({$0..max(Forbid)+1} minus Forbid)
    od:
    seq(A[i],i=0..200); # Robert Israel, Aug 24 2016