cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276204 a(0) = a(1) = 0. For n>1 a(n) is the smallest nonnegative integer such that there is no arithmetic progression k,m,n (of length 3) such that a(k)+a(m) = a(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0
Offset: 0

Views

Author

Michal Urbanski, Aug 24 2016

Keywords

Comments

The sequence has the same set of values as A033627.
The sequence has a kind of a "triple rhythm", compare the distribution of zeros to the Cantor set.
Conjecture 1:
One can calculate a(n) in a following, non-recursive way, using the ternary representation of n.
Let n>=0 be an integer. We consider two cases:
1. There is no digit 2 in the ternary representation of n. Then a(n) = 0.
2. There is a digit 2 in the ternary representation of n.
Let i be the number of the position (counting from right) of the rightmost digit 2 in ternary representation of n, then a(n) = A033627(i).
For example: let n = 19. The ternary representation of 19 is 201. The rightmost digit 2 in the number 201 is on the third position (counting from right), so a(19) = A033627(3) = 4.
Conjecture 2:
The sequence can be generated in a following way:
Start with a zero. Take three consecutive copies of all you have, replace all zeros in the third copy with the next value of A033627, repeat.
Both of these conjectures can be generalized for similarly defined sequences where the length of the arithmetic progression in the definition (in A276204 it is 3) is a prime number, see A276206.
The assumption about primality is essential, for complex lengths of the arithmetic progression the sequence is irregular, see A276205.

Examples

			For n = 6 we have that:
a(6)>0, because a(0)+a(3)=0 and 0,3,6 is an arithmetic progression.
a(6)>1, because a(4)+a(5)=0 and 4,5,6 is an arithmetic progression.
There is no such arithmetic progression k,m,6 that a(k)+a(m) = 2, so a(6) = 2.
		

Crossrefs

Cf. A276205 (length 4), A276206 (length 5), A276207 (any length).

A276205 a(0) = a(2) = a(3) = 0. For n>2 a(n) is the smallest nonnegative integer such that there is no arithmetic progression j,k,m,n (of length 4) such that a(j)+a(k)+a(m) = a(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 3, 0, 0, 0, 4, 0, 1, 2, 2, 3, 1, 4, 0, 0, 1, 0, 0, 0, 5, 3, 0, 7, 1, 0, 4, 2, 4, 2, 3, 5, 1, 1, 4, 1, 3, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 9, 2, 8, 10, 0, 4, 0, 0, 0, 2, 1, 7, 13, 4, 12, 4, 6, 7, 4, 4, 2, 0, 10, 2, 2, 1, 3, 1, 0, 0, 0, 12, 0, 9, 1, 0, 5, 2, 1, 17, 0, 3, 5, 0, 1, 1, 0, 0, 8, 3, 0, 0, 0, 15, 12, 9, 10, 11, 1, 5
Offset: 0

Views

Author

Michal Urbanski, Aug 24 2016

Keywords

Comments

This sequence, unlike A276204 (defined similarly) is seemingly irregular.
a(n) <= n/3. - Robert Israel, Aug 24 2016
The graph (and the definition) are reminiscent of A229037. - N. J. A. Sloane, Aug 29 2016

Examples

			For n = 6 we have that:
a(6)>0, because a(0)+a(2)+a(4)=0 and 0,2,4,6 is an arithmetic progression.
a(6)>1, because a(3)+a(4)+a(5)=1 and 3,4,5,6 is an arithmetic progression.
there is no such arithmetic progression j,k,m,6 that a(j)+a(k)+a(m)=2, so a(6) = 2.
		

Crossrefs

Cf. A276204 (length 3), A276206 (length 5), A276207 (any length).
Cf. also A229037.

Programs

  • Maple
    for i from 0 to 2 do A[i]:= 0 od:
    for n from 3 to 200 do
      Forbid:= {seq(A[n-d]+A[n-2*d]+A[n-3*d],d=1..floor(n/3))};
      A[n]:= min({$0..max(Forbid)+1} minus Forbid)
    od:
    seq(A[i],i=0..200); # Robert Israel, Aug 24 2016

A276207 a(0) = a(1) = 0. For n>1 a(n) is the smallest nonnegative integer such that there is no arithmetic progression m_1,m_2,...,m_i,n (2<=i

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 4, 1, 1, 0, 0, 5, 0, 0, 3, 7, 2, 3, 2, 4, 1, 1, 12, 1, 5, 1, 1, 0, 0, 13, 0, 0, 10, 9, 6, 7, 0, 0, 18, 0, 0, 15, 4, 14, 7, 6, 8, 2, 6, 3, 16, 3, 3, 2, 3, 7, 1, 10, 25, 8, 5, 1, 1, 1, 4, 14, 27, 4, 1, 1, 10, 2, 2, 6, 1, 26, 8, 1, 19, 1, 1, 0, 0, 13, 0, 0, 7, 24, 2, 19, 0, 0, 34, 0, 0, 29, 32, 32, 5, 15, 21, 14, 15, 6, 6, 24, 13, 39, 0, 0, 24, 0
Offset: 0

Views

Author

Michal Urbanski, Aug 24 2016

Keywords

Comments

The distribution of zeros is the same as in A276204.

Examples

			For n = 5 we have that:
a(5)>0, because a(3)+a(4)=0 and 3,4,5 is an arithmetic progression
a(5)>1, because a(2)+a(3)+a(4)=1 and 2,3,4,5 is an arithmetic progression
there is no such arithmetic progression m_1,m_2,...,m_i,5 that a(m_1)+a(m_2)+...+a(m_i)=2, so a(5) = 2.
		

Crossrefs

Cf. A276204 (length 3), A276205 (length 4), A276206 (length 5).
Showing 1-3 of 3 results.