A276243 Number of n X 3 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-2) and new values introduced in order 0..2.
3, 24, 85, 347, 1404, 5671, 23000, 93204, 377421, 1529844, 6199862, 25119735, 101801648, 412550060, 1671737809, 6774642628, 27453734102, 111251981923, 450838255264, 1826978135284, 7403609436805, 30002352111444, 121581392056470
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1. .0..1..2. .0..0..1. .0..1..1. .0..0..1. .0..1..1. .0..0..1 ..2..0..0. .0..1..1. .1..0..0. .2..2..1. .1..2..2. .2..0..0. .1..2..2 ..2..2..1. .2..2..0. .1..2..2. .1..2..0. .0..1..1. .1..1..2. .0..1..1 ..0..0..1. .1..1..0. .0..0..2. .1..1..0. .0..0..1. .2..0..1. .0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A276248.
Formula
Empirical: a(n) = 5*a(n-1) - 4*a(n-2) + 17*a(n-3) - 83*a(n-4) + 54*a(n-5) + 56*a(n-6) for n>9.
Empirical g.f.: x*(3 + 9*x - 23*x^2 - 33*x^3 - 150*x^4 + 424*x^5 - 47*x^6 - 113*x^7 + 28*x^8) / ((1 - 2*x)*(1 - 3*x - 2*x^2 - 21*x^3 + 41*x^4 + 28*x^5)). - Colin Barker, Feb 05 2019