cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276250 Number of 4Xn 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-2) and new values introduced in order 0..2.

This page as a plain text file.
%I A276250 #4 Aug 25 2016 11:05:43
%S A276250 14,144,347,1447,6372,26325,115682,509750,2196820,9590448,41943114,
%T A276250 182345942,794079132,3464843904,15086188944,65723682133,286477934932,
%U A276250 1248121989813,5437932782722,23696963843058,103252809255037
%N A276250 Number of 4Xn 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-2) and new values introduced in order 0..2.
%C A276250 Row 4 of A276248.
%H A276250 R. H. Hardin, <a href="/A276250/b276250.txt">Table of n, a(n) for n = 1..210</a>
%F A276250 Empirical: a(n) = 2*a(n-1) +16*a(n-2) -5*a(n-3) -96*a(n-4) -140*a(n-5) +637*a(n-6) +1845*a(n-7) -4795*a(n-8) -4911*a(n-9) +12349*a(n-10) -1040*a(n-11) -18997*a(n-12) +57322*a(n-13) +54548*a(n-14) -182018*a(n-15) -172148*a(n-16) +276602*a(n-17) +240887*a(n-18) -309700*a(n-19) -3428*a(n-20) +178083*a(n-21) -246987*a(n-22) -172205*a(n-23) +88525*a(n-24) +1238349*a(n-25) -316382*a(n-26) -1914836*a(n-27) +450326*a(n-28) +1900140*a(n-29) +67773*a(n-30) -2250174*a(n-31) -208550*a(n-32) +2206511*a(n-33) +362321*a(n-34) -1986445*a(n-35) -432077*a(n-36) +1246173*a(n-37) +592283*a(n-38) -611575*a(n-39) -456433*a(n-40) +225504*a(n-41) +147384*a(n-42) +9126*a(n-43) -62519*a(n-44) -16308*a(n-45) +12194*a(n-46) +3502*a(n-47) -600*a(n-48) -251*a(n-49) +286*a(n-50) +69*a(n-51) -134*a(n-52) -27*a(n-53) +19*a(n-54) +8*a(n-55) -a(n-56) -a(n-57) for n>60
%e A276250 Some solutions for n=4
%e A276250 ..0..1..1..0. .0..0..1..2. .0..1..1..2. .0..1..2..2. .0..0..1..2
%e A276250 ..2..0..1..1. .1..0..0..2. .2..2..0..0. .0..0..1..1. .2..0..0..1
%e A276250 ..2..2..0..0. .2..2..1..0. .0..1..2..2. .1..2..2..1. .1..2..2..0
%e A276250 ..0..1..2..0. .0..0..2..1. .0..0..1..1. .1..1..2..2. .0..0..1..1
%Y A276250 Cf. A276248.
%K A276250 nonn
%O A276250 1,1
%A A276250 _R. H. Hardin_, Aug 25 2016