This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276263 #11 Feb 16 2025 08:33:36 %S A276263 139,829,4831,15319,36709,53959,58789,65551,74521,107089,142969, %T A276263 198859,227011,278071,292561,727399,750721,804541,879199,957169, %U A276263 1181281,1325491,1364821,1519519,1700161,1835401,1881631,2111539,2231461,2396509,2778079,2926981,3067879 %N A276263 Centered 23-gonal primes. %C A276263 Primes of the form (23*k^2 + 23*k + 2)/2. %C A276263 Numbers k such that (23*k^2 + 23*k + 2)/2 is prime: 3, 8, 20, 36, 56, 68, 71, 75, 80, 96, 111, 131, 140, 155, 159, 251, 255, 264, 276, ... %H A276263 OEIS Wiki, <a href="http://oeis.org/wiki/Centered_polygonal_numbers#cite_note-1">Centered polygonal numbers</a> %H A276263 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Number</a> %H A276263 <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a> %t A276263 Intersection[Table[(23 k^2 + 23 k + 2)/2, {k, 0, 1000}], Prime[Range[230000]]] %t A276263 Select[Table[(23k^2+23k+2)/2,{k,600}],PrimeQ] (* _Harvey P. Dale_, Jun 17 2021 *) %o A276263 (PARI) lista(nn) = for(n=1, nn, if(isprime(p=(23*n^2 + 23*n + 2)/2), print1(p, ", "))); \\ _Altug Alkan_, Aug 26 2016 %Y A276263 Cf. A000040, A069174. %Y A276263 Cf. centered k-gonal primes listed in A276261. %K A276263 nonn %O A276263 1,1 %A A276263 _Ilya Gutkovskiy_, Aug 26 2016