cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276300 Number of 3 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

5, 11, 45, 173, 693, 2765, 11061, 44237, 176949, 707789, 2831157, 11324621, 45298485, 181193933, 724775733, 2899102925, 11596411701, 46385646797, 185542587189, 742170348749, 2968681394997, 11874725579981, 47498902319925
Offset: 1

Views

Author

R. H. Hardin, Aug 28 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..1. .0..1..0..1. .0..1..0..1. .0..1..0..2. .0..1..2..1
..0..1..2..0. .0..2..0..1. .2..1..2..1. .0..2..1..2. .0..1..2..0
..2..1..2..0. .0..2..0..2. .2..1..0..2. .1..2..0..2. .0..1..2..1
		

Crossrefs

Row 3 of A276299.

Formula

Empirical: a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) for n>4.
Conjectures from Colin Barker, Feb 05 2019: (Start)
G.f.: x*(5 - 9*x - 4*x^2 + 2*x^3) / ((1 - x)*(1 + x)*(1 - 4*x)).
a(n) = (8 + 27*4^n) / 40 for n>1 and even.
a(n) = (72 + 27*4^n) / 40 for n>1 and odd.
(End)