A276311 Numbers k such that (13*10^k + 197)/3 is prime.
1, 2, 4, 5, 17, 21, 23, 28, 41, 43, 51, 59, 105, 115, 131, 273, 585, 1519, 2303, 4791, 4921, 6019, 7833, 25711, 27319, 32497, 37975, 49381, 87199
Offset: 1
Examples
4 is in this sequence because (13*10^4 + 197)/3 = 43399 is prime. Initial terms and associated primes: a(1) = 1, 109; a(2) = 2, 499; a(3) = 4, 43399; a(4) = 5, 433399; a(5) = 17, 433333333333333399, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 43w99.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(13*10^# + 197)/3] &]
-
PARI
is(n)=ispseudoprime((13*10^n+197)/3) \\ Charles R Greathouse IV, Jun 13 2017
Comments