This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276316 #30 Oct 15 2019 09:20:16 %S A276316 1,4,31,300,3251,37744,459060,5773548,74474455,979872036,13099102575, %T A276316 177414673488,2429310288468,33574008073120,467717206216760, %U A276316 6560977611629676,92595131510426943,1313820730347196300,18730821529411507725,268185082351558093260 %N A276316 G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3. %H A276316 Robert Israel, <a href="/A276316/b276316.txt">Table of n, a(n) for n = 1..844</a> %H A276316 Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019. %H A276316 Thomas M. Richardson, <a href="http://arxiv.org/abs/1609.01193">The three 'R's and the Riordan dual</a>, arXiv:1609.01193 [math.CO], 2016. %F A276316 G.f.: Series_Reversion(x-4*x^2+x^3). %F A276316 From _Robert Israel_, Sep 02 2016: (Start) %F A276316 G.f. g(x) satisfies the differential equation %F A276316 (12-184*t-27*t^2)*g''(t) - (92+27*t)*g'(t) + 3*g(t) = 4. %F A276316 (-27*n^2+3)*a(n)+(-184*n^2-276*n-92)*a(n+1)+(12*n^2+36*n+24)*a(n+2) = 0 %F A276316 for n >= 1. (End) %F A276316 a(n) ~ (46 + 13*sqrt(13))^(n - 1/2) / (13^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n + 1/2) * 3^(n - 1/2)). - _Vaclav Kotesovec_, Aug 22 2017 %e A276316 G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+... %e A276316 Related Expansions: %e A276316 A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+... %e A276316 A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+... %p A276316 S:= series(RootOf(x-4*x^2+x^3-t,x),t,100): %p A276316 seq(coeff(S,t,j),j=1..100); # _Robert Israel_, Sep 02 2016 %t A276316 Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* _Vaclav Kotesovec_, Aug 22 2017 *) %o A276316 (PARI) {a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)} %o A276316 for(n=1, 30, print1(a(n), ", ")) %Y A276316 Cf. A250886, A276310, A276314, A276315. %K A276316 nonn,easy %O A276316 1,2 %A A276316 _Tom Richardson_, Aug 29 2016