This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276317 #15 Aug 01 2019 04:08:58 %S A276317 1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,1,4,1,2,1,1,2,1,1,1,3,1,1,1,1, %T A276317 1,1,2,1,1,1,2,2,1,2,2,2,1,1,1,1,1,1,1,2,1,2,1,2,4,2,2,1,2,1,4,1,1,1, %U A276317 1,5,2,1,1,1,2,2,1,1,2,1,1,1,2,2,1,5,2,1,1,3,2,2,3,1,1,1,1 %N A276317 a(n) = b(n)/c(n) where b(n) = smallest positive k such that (2*k)^2 + 2*n - 1 is prime and c(n) = gcd(n,3) = A109007(n). %e A276317 a(1) = b(1)/c(1) = 1/1 = 1 because b(1) = (2*1)^2 + 2*1 - 1 = 5 and 5 is prime, c(1) = gcd(1,3) + A109007(1) = 1, %e A276317 a(2) = b(2)/c(2) = 1/1 = 1 because b(2) = (2*1)^2 + 2*2 - 1 = 7 and 7 is prime, c(2) = gcd(2,3) + A109007(2) = 1, %e A276317 a(3) = b(3)/c(3) = 3/3 = 1 because b(2) = (2*3)^2 + 2*3 - 1 = 41 and 41 is prime, c(3) = gcd(3,3) + A109007(3) = 3. %t A276317 Table[k = 1; While[! PrimeQ[(2 k)^2 + 2 n - 1], k++]; k/GCD[n, 3], {n, 97}] (* _Michael De Vlieger_, Aug 31 2016 *) %Y A276317 Cf. A109007, A023204. %K A276317 nonn %O A276317 1,11 %A A276317 _Juri-Stepan Gerasimov_, Aug 29 2016