This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276322 #21 Jun 02 2024 14:03:24 %S A276322 1,2,5,7,17,18,25,60,64,66,118,125,1021,1901,2273,2524,6048,7098,8281, %T A276322 11634,13843,16098,18652,18661,20570,32291,34181,59928,65297,86546 %N A276322 Numbers k such that (13*10^k + 83) / 3 is prime. %C A276322 For k > 1, numbers k such that the digit 4 followed by k-2 occurrences of the digit 3 followed by the digits 61 is prime (see Example section). %C A276322 a(31) > 2*10^5. %H A276322 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A276322 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 43w61</a>. %e A276322 5 is in this sequence because (13*10^5 + 83) / 3 = 433361 is prime. %e A276322 Initial terms and associated primes: %e A276322 a(1) = 1, 71; %e A276322 a(2) = 2, 461; %e A276322 a(3) = 5, 433361; %e A276322 a(4) = 7, 43333361; %e A276322 a(5) = 17, 433333333333333361, etc. %t A276322 Select[Range[0, 100000], PrimeQ[(13*10^# + 83) / 3] &] %o A276322 (PARI) is(n)=ispseudoprime((13*10^n + 83)/3) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A276322 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A276322 nonn,more %O A276322 1,2 %A A276322 _Robert Price_, Sep 01 2016