This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276323 #44 Jan 08 2017 11:27:20 %S A276323 4382314,59821998476834,338197165389273486,17314015796594772560245514, %T A276323 145853326344012138627669357202, %U A276323 12936469013977571458378002436843685186,15931675838688077485749893663903436780403973163302 %N A276323 a(n) = (binomial(2 * prime(n + 3), prime(n + 3)) * A005259(prime(n + 3) - 1) - 2)/prime(n + 3)^5 for n >= 1. %C A276323 Let p be a prime > 5. Binomial(2 * p, p) * A005259(p - 1) == 2 (mod p^5). So a(n) is an integer. %H A276323 Seiichi Manyama, <a href="/A276323/b276323.txt">Table of n, a(n) for n = 1..88</a> %H A276323 Julian Rosen, <a href="http://arxiv.org/abs/1608.06864">Periods, supercongruences, and their motivic lifts</a>, arXiv:1608.06864 [math.NT], 2016. %e A276323 a(1) = (binomial(14, 7) * A005259(6) - 2)/7^5 = (3432 * 21460825 - 2)/7^5 = 4382314. %t A276323 Table[(Binomial[2 Prime[n + 3], Prime[n + 3]] Sum[(Binomial[#, k] Binomial[# + k, k])^2, {k, 0, #}] &[Prime[n + 3] - 1] - 2)/Prime[n + 3]^5, {n, 7}] (* _Michael De Vlieger_, Aug 30 2016 *) %o A276323 (Ruby) %o A276323 require 'prime' %o A276323 def C(n, r) %o A276323 r = [r, n - r].min %o A276323 return 1 if r == 0 %o A276323 return n if r == 1 %o A276323 numerator = (n - r + 1..n).to_a %o A276323 denominator = (1..r).to_a %o A276323 (2..r).each{|p| %o A276323 pivot = denominator[p - 1] %o A276323 if pivot > 1 %o A276323 offset = (n - r) % p %o A276323 (p - 1).step(r - 1, p){|k| %o A276323 numerator[k - offset] /= pivot %o A276323 denominator[k] /= pivot %o A276323 } %o A276323 end %o A276323 } %o A276323 result = 1 %o A276323 (0..r - 1).each{|k| %o A276323 result *= numerator[k] if numerator[k] > 1 %o A276323 } %o A276323 return result %o A276323 end %o A276323 def A005259(n) %o A276323 i = 0 %o A276323 a, b = 1, 5 %o A276323 ary = [1] %o A276323 while i < n %o A276323 i += 1 %o A276323 a, b = b, ((((34 * i + 51) * i + 27) * i + 5) * b - i ** 3 * a) / (i + 1) ** 3 %o A276323 ary << a %o A276323 end %o A276323 ary %o A276323 end %o A276323 def A276323(n) %o A276323 p_ary = Prime.take(n + 3)[3..-1] %o A276323 a = A005259(p_ary[-1] - 1) %o A276323 ary = [] %o A276323 p_ary.each{|i| %o A276323 j = C(2 * i, i) * a[i - 1] - 2 %o A276323 break if j % i ** 5 > 0 %o A276323 ary << j / i ** 5 %o A276323 } %o A276323 ary %o A276323 end %Y A276323 Cf. A000984, A005259. %K A276323 nonn %O A276323 1,1 %A A276323 _Seiichi Manyama_, Aug 30 2016