cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276344 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A087686(1+a(n)), a(A055938(n)) = A088359(a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

This page as a plain text file.
%I A276344 #7 Sep 03 2016 17:04:09
%S A276344 1,3,2,7,6,5,4,15,13,14,12,11,10,9,8,31,28,29,30,23,25,27,26,22,24,21,
%T A276344 20,19,18,17,16,63,59,60,61,50,52,62,53,55,56,58,41,44,49,57,51,46,54,
%U A276344 48,40,43,47,45,39,42,38,37,36,35,34,33,32,127,122,123,124,108,110,125,111,113,114,126,89,92,117,115,118,94,119,121
%N A276344 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A087686(1+a(n)), a(A055938(n)) = A088359(a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.
%H A276344 Antti Karttunen, <a href="/A276344/b276344.txt">Table of n, a(n) for n = 1..8191</a>
%H A276344 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A276344 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A276344 a(1)=1; for n > 1, if A079559(n)=1 [when n is in A005187], a(n) = A087686(1+a(A213714(n)-1)), otherwise a(n) = A088359(a(A234017(n))).
%F A276344 As a composition of other permutations:
%F A276344 a(n) = A267112(A233275(n)).
%F A276344 a(n) = A276442(A233277(n)).
%o A276344 (Scheme)
%o A276344 (definec (A276344 n) (cond ((< n 2) n) ((not (zero? (A079559 n))) (A087686 (+ 1 (A276344 (- (A213714 n) 1))))) (else (A088359 (A276344 (A234017 n))))))
%Y A276344 Inverse: A276343.
%Y A276344 Cf. A004001, A005187, A055938, A079559, A087686, A088359, A213714, A234017.
%Y A276344 Similar or related permutations: A233275, A233277, A267112, A276346, A276442.
%K A276344 nonn,base
%O A276344 1,2
%A A276344 _Antti Karttunen_, Sep 03 2016