cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276346 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A088359(a(n)), a(A055938(n)) = A087686(1+a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

This page as a plain text file.
%I A276346 #7 Sep 03 2016 17:04:28
%S A276346 1,2,3,5,4,7,6,10,12,9,13,8,15,14,11,19,24,22,18,27,21,23,17,29,28,25,
%T A276346 16,31,30,26,20,36,45,43,40,54,51,35,49,42,39,41,58,48,53,34,52,38,50,
%U A276346 44,61,60,33,59,56,55,46,32,63,62,57,47,37,69,83,81,78,102,99,74,97,93,91,68,116,112,80,88,77,109,73,75,96,90
%N A276346 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A088359(a(n)), a(A055938(n)) = A087686(1+a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.
%H A276346 Antti Karttunen, <a href="/A276346/b276346.txt">Table of n, a(n) for n = 1..8191</a>
%H A276346 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A276346 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A276346 a(1)=1; for n > 1, if A079559(n)=1 [when n is in A005187], a(n) = A088359(a(A213714(n)-1)), otherwise a(n) = A087686(1+a(A234017(n))).
%F A276346 As a composition of other permutations:
%F A276346 a(n) = A276442(A233275(n)).
%F A276346 a(n) = A267112(A233277(n)).
%o A276346 (Scheme)
%o A276346 (definec (A276346 n) (cond ((< n 2) n) ((not (zero? (A079559 n))) (A088359 (A276346 (- (A213714 n) 1)))) (else (A087686 (+ 1 (A276346 (A234017 n)))))))
%Y A276346 Inverse: A276345.
%Y A276346 Cf. A004001, A005187, A055938, A079559, A087686, A088359, A213714, A234017.
%Y A276346 Similar or related permutations: A233275, A233277, A267112, A276344, A276442.
%K A276346 nonn,base
%O A276346 1,2
%A A276346 _Antti Karttunen_, Sep 03 2016