A276353 Numbers k such that (19*10^k + 77) / 3 is prime.
1, 2, 3, 5, 6, 17, 22, 56, 71, 90, 93, 109, 124, 135, 179, 255, 1804, 2541, 2707, 3195, 4952, 5884, 9301, 19847, 27903, 45739, 65545, 69424, 103907, 160619, 168173, 297497, 299640
Offset: 1
Examples
3 is in this sequence because (19*10^3 + 77) / 3 = 6359 is prime. Initial terms and associated primes: a(1) = 1, 89; a(2) = 2, 659 a(3) = 3, 6359; a(4) = 5, 633359; a(5) = 6, 6333359, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 63w59.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(19*10^# + 77) / 3] &]
-
PARI
is(n)=ispseudoprime((19*10^n + 77)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(29)-a(31) from Robert Price, May 28 2019
a(32)-a(33) from Robert Price, Jun 01 2023
Comments