cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276432 Sum of the traces of all plane partitions of n.

This page as a plain text file.
%I A276432 #23 Feb 16 2021 21:18:50
%S A276432 1,4,10,26,56,126,252,512,980,1866,3427,6258,11121,19618,33975,58328,
%T A276432 98732,165804,275246,453544,740338,1200088,1929897,3083898,4893775,
%U A276432 7720826,12106814,18883104,29291740,45215386,69451631,106197524,161656759,245050410,369935066
%N A276432 Sum of the traces of all plane partitions of n.
%C A276432 Convolution of A000203 and A000219. - _Vaclav Kotesovec_, Sep 25 2016
%C A276432 Convolution of A340793 and A091360. - _Omar E. Pol_, Feb 16 2021
%D A276432 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, pp. 179-201.
%H A276432 Vaclav Kotesovec, <a href="/A276432/b276432.txt">Table of n, a(n) for n = 1..10000</a>
%F A276432 G.f.: g(x) = Sum_{j>=1} (j*x^j/(1-x^j))/Product_{k>=1} (1-x^k)^k.
%F A276432 a(n) = Sum(k*A089353(n,k), k>=1).
%e A276432 a(3) = 10 because the 6 (=A000219(3)) planar partitions of 3 are [3], [2,1], [2;1], [1,1,1], [1;1;1], [1,1;1] (; indicates a new row); the sum of their traces is 3+2+2+1+1+1 = 10.
%p A276432 g:= (sum(j*x^j/(1-x^j),j = 1..100))/(product((1-x^k)^k,k = 1..100)): gser := series(g, x = 0,40): seq(coeff(gser, x, m), m = 1 .. 35);
%p A276432 # second Maple program:
%p A276432 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p
%p A276432       ->p+[0, j*p[1]])(b(n-i*j, i-1))*binomial(i+j-1, j), j=0..n/i)))
%p A276432     end:
%p A276432 a:= n-> b(n$2)[2]:
%p A276432 seq(a(n), n=1..50);  # _Alois P. Heinz_, Sep 24 2018
%t A276432 nmax = 50; Rest[CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Sep 25 2016 *)
%Y A276432 Cf. A000219, A089353, A277029.
%Y A276432 Cf. A091360, A340793.
%K A276432 nonn
%O A276432 1,2
%A A276432 _Emeric Deutsch_, Sep 24 2016