This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276432 #23 Feb 16 2021 21:18:50 %S A276432 1,4,10,26,56,126,252,512,980,1866,3427,6258,11121,19618,33975,58328, %T A276432 98732,165804,275246,453544,740338,1200088,1929897,3083898,4893775, %U A276432 7720826,12106814,18883104,29291740,45215386,69451631,106197524,161656759,245050410,369935066 %N A276432 Sum of the traces of all plane partitions of n. %C A276432 Convolution of A000203 and A000219. - _Vaclav Kotesovec_, Sep 25 2016 %C A276432 Convolution of A340793 and A091360. - _Omar E. Pol_, Feb 16 2021 %D A276432 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, pp. 179-201. %H A276432 Vaclav Kotesovec, <a href="/A276432/b276432.txt">Table of n, a(n) for n = 1..10000</a> %F A276432 G.f.: g(x) = Sum_{j>=1} (j*x^j/(1-x^j))/Product_{k>=1} (1-x^k)^k. %F A276432 a(n) = Sum(k*A089353(n,k), k>=1). %e A276432 a(3) = 10 because the 6 (=A000219(3)) planar partitions of 3 are [3], [2,1], [2;1], [1,1,1], [1;1;1], [1,1;1] (; indicates a new row); the sum of their traces is 3+2+2+1+1+1 = 10. %p A276432 g:= (sum(j*x^j/(1-x^j),j = 1..100))/(product((1-x^k)^k,k = 1..100)): gser := series(g, x = 0,40): seq(coeff(gser, x, m), m = 1 .. 35); %p A276432 # second Maple program: %p A276432 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p %p A276432 ->p+[0, j*p[1]])(b(n-i*j, i-1))*binomial(i+j-1, j), j=0..n/i))) %p A276432 end: %p A276432 a:= n-> b(n$2)[2]: %p A276432 seq(a(n), n=1..50); # _Alois P. Heinz_, Sep 24 2018 %t A276432 nmax = 50; Rest[CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Sep 25 2016 *) %Y A276432 Cf. A000219, A089353, A277029. %Y A276432 Cf. A091360, A340793. %K A276432 nonn %O A276432 1,2 %A A276432 _Emeric Deutsch_, Sep 24 2016