This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276453 #28 Dec 31 2024 11:14:44 %S A276453 1,1,2,6,42,903,136052,881442036,2581196224947732, %T A276453 342795531574625708871288171, %U A276453 5732512385084161208637718426682572229606557631,5754497648510061274107897581706624823818534711463525598519384262130236399970112 %N A276453 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = 1, a(2) = 2, a(3) = 6. %C A276453 From _Antoine de Saint Germain_, Dec 30 2024: (Start) %C A276453 Sequence consists of integers, see Math StackExchange link. %C A276453 Values of a unitary Y-frieze pattern associated to the linearly oriented quiver K4 (i.e., the quiver whose underlying graph is the complete graph on the vertices {1,2,3,4}, oriented such that i -> j whenever i < j). (End) %H A276453 Seiichi Manyama, <a href="/A276453/b276453.txt">Table of n, a(n) for n = 0..15</a> %H A276453 Math StackExchange, <a href="https://math.stackexchange.com/questions/1905063/is-a276175-integer-only/4941736#4941736">Is A276175 integer-only?</a> %F A276453 a(n) = A051786(n)*A051786(n+1)*A051786(n+2). %t A276453 RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4], a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 6}, a, {n, 0, 11}] (* _Michael De Vlieger_, Sep 03 2016 *) %o A276453 (Ruby) %o A276453 def A276453(n) %o A276453 a = [1, 1, 2, 6] %o A276453 ary = [1] %o A276453 while ary.size < n + 1 %o A276453 i = a[1..-1].inject(1){|s, i| s * (i + 1)} %o A276453 break if i % a[0] > 0 %o A276453 a = *a[1..-1], i / a[0] %o A276453 ary << a[0] %o A276453 end %o A276453 ary %o A276453 end %o A276453 (Magma) I:=[1, 1, 2, 6]; [n le 4 select I[n] else (Self(n-1)+1)*(Self(n-2)+1)*(Self(n-3)+1)/Self(n-4): n in [1..13]]; // _Vincenzo Librandi_, Dec 30 2024 %Y A276453 Cf. A051786, A101879, A276175. %K A276453 nonn %O A276453 0,3 %A A276453 _Seiichi Manyama_, Sep 03 2016