This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276455 #54 Apr 13 2020 15:34:00 %S A276455 3,701,45269999 %N A276455 Primes of the form Sum_{k=1..n} k^(k-1). %C A276455 Searched up to n = 5000. %C A276455 a(4) has 38019 digits (1973212031 ... 7493445627) and corresponds to n=9553. - _Robert Price_, Sep 23 2016; [number of digits in a(4) corrected by _Jon E. Schoenfield_, Nov 06 2016] %C A276455 No other primes corresponding to n < 80000. - _Robert Price_, Mar 17 2017 %H A276455 Sebastiao Antonio da Silva, <a href="https://primes.utm.edu/curios/page.php/9.html">Prime Curios: 9^8 + 8^7 + 7^6 + 6^5 + 5^4 + 4^3 + 3^2 + 2^1 + 1^0 is prime</a> %e A276455 3 is in the sequence because 3 is prime and 3 = 2^1 + 1^0. %e A276455 701 is in the sequence because 701 is prime and 701 = 5^4 + 4^3 + 3^2 + 2^1 + 1^0. %e A276455 45269999 is in the sequence because 45269999 is prime and 45269999 = 9^8 + 8^7 + 7^6 + 6^5 + 5^4 + 4^3 + 3^2 + 2^1 + 1^0. %t A276455 Select[Accumulate[Table[n^(n-1),{n,100}]],PrimeQ] (* _Harvey P. Dale_, Apr 13 2020 *) %o A276455 (Sage) %o A276455 sum = 0 %o A276455 seq = [] %o A276455 max_n = 2500 %o A276455 for n in range(1, max_n+1): %o A276455 sum += n^(n-1) %o A276455 if is_prime(sum): %o A276455 seq.append(n) %o A276455 print(seq) %Y A276455 Primes in A060946. %K A276455 nonn,bref %O A276455 1,1 %A A276455 _Robert C. Lyons_, Sep 06 2016