This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276460 #11 Sep 04 2016 23:56:21 %S A276460 0,1,2,5,17,37,101,197,257,401,577,677,901,1297,1601,2917,3137,4357, %T A276460 5477,7057,8101,8837,10001,12101,13457,14401,15377,15877,16901,17957, %U A276460 20737,21317,22501,24337,25601,28901,30977,32401,33857,41617,42437,44101,50177,52901 %N A276460 Numbers k such that for any positive integers a < b, if a * b = k then b - a is a square. %C A276460 A majority of numbers are primes of form m^2+1 (A002496), and it appears that the composite numbers of the form m^2+1: 901, 10001, 20737, 75077, 234257, 266257, 276677, 571537,... are semiprimes. %C A276460 For n >1, a(n)==1,5 mod 12 and a(n)==1,5 mod 16. %H A276460 Chai Wah Wu, <a href="/A276460/b276460.txt">Table of n, a(n) for n = 1..10000</a> %e A276460 901 is in the sequence because 901 = 1*901 = 17*53 => 901-1 = 30^2 and 53-17 = 6^2. %t A276460 t={};Do[ds=Divisors[n];If[EvenQ[Length[ds]],ok=True;k=1;While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[Abs[ds[[k]]-ds[[-k]]]]]),k++];If[ok,AppendTo[t,n]]],{n,2,10^5}];t %o A276460 (Python) %o A276460 from __future__ import division %o A276460 from sympy import divisors %o A276460 from gmpy2 import is_square %o A276460 A276460_list = [0] %o A276460 for m in range(10**3): %o A276460 k = m**2+1 %o A276460 for d in divisors(k): %o A276460 if d > m: %o A276460 A276460_list.append(k) %o A276460 break %o A276460 if not is_square(k//d - d): %o A276460 break # _Chai Wah Wu_, Sep 04 2016 %Y A276460 Cf. A002496, A134406. %K A276460 nonn %O A276460 1,3 %A A276460 _Michel Lagneau_, Sep 03 2016 %E A276460 Terms 0, 1 added by _Chai Wah Wu_, Sep 04 2016