This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276469 #30 Jul 09 2020 07:21:13 %S A276469 0,1,0,1,0,1,1,2,1,2,1,0,1,1,1,1,1,3,1,1,3,1,0,1,1,1,1,1,1,2,1,2,1,2, %T A276469 1,2,1,3,1,1,3,1,1,3,1,1,1,1,1,5,1,1,1,1,5,1,0,1,1,1,1,1,1,1,1,1,1,1, %U A276469 1,1,1,1,1,1,1,1,1,1 %N A276469 Triangle read by rows: T(n,k) = n-th cyclotomic polynomial evaluated at x = k and then reduced mod n. %C A276469 Let C_n(x) denote the n-th cyclotomic polynomial. Then T(n,k) = C_n(k) mod n. %C A276469 Conjectures: %C A276469 1) (mod p) C_p(k) == 1, except C_p(1) == 0, for prime p, 0<=k<p. %C A276469 2) (mod 2^e) C_[2^e](k) == 1 if k odd, == 0 k even, for e>1, 0<=k<2^e %C A276469 3) (mod p^e) C_[p^e](k) == 1, except C_[p^e](1+np) = p, e>1, 0<=n<p^(e-1) %C A276469 4.a) (mod m) C_m(k) for some composite m has values all 1's, %C A276469 but it is not clear for which m this happens, %C A276469 4.b) (mod m) C_m(m) for other composite m has values 1 and x, %C A276469 4.c) with recurring period x %C A276469 4.d) x is the largest prime dividing m. %C A276469 Remarks: (1) is trivial, I suspect (2) and (3) are simple algebra-crunching, (4) seems to be an interesting question. (4) seems to partition the natural numbers into primes union A253235 union A276628. %F A276469 T(i,j) = Cyclotomic_i(j) (mod i); for i>=1 and j=0..i-1. %e A276469 Let C_N(x) be the N'th cyclotomic polynomial, then the values of C_N(k) mod N, m=0,...,N-1, are: %e A276469 \ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 -- k --> %e A276469 C_1: 0 %e A276469 C_2: 1 0 %e A276469 C_3: 1 0 1 %e A276469 C_4: 1 2 1 2 %e A276469 C_5: 1 0 1 1 1 %e A276469 C_6: 1 1 3 1 1 3 (note period 3) %e A276469 C_7: 1 0 1 1 1 1 1 %e A276469 C_8: 1 2 1 2 1 2 1 2 %e A276469 C_9: 1 3 1 1 3 1 1 3 1 (note period 3) %e A276469 C_10: 1 1 1 1 5 1 1 1 1 5 (note period 5) %e A276469 C_11: 1 0 1 1 1 1 1 1 1 1 1 %e A276469 C_12: 1 1 1 1 1 1 1 1 1 1 1 1 %e A276469 C_13: 1 0 1 1 1 1 1 1 1 1 1 1 1 %e A276469 C_14: 1 1 1 1 1 1 7 1 1 1 1 1 1 7 (note period 7) %e A276469 C_15: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A276469 C_16: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 %t A276469 Table[Mod[Cyclotomic[i, j], i], {i, 12}, {j, 0, i - 1}] // Flatten (* _Michael De Vlieger_, Sep 23 2016 *) %o A276469 (PARI) T(n, k) = polcyclo(n, k) % n; \\ _Michel Marcus_, Sep 22 2016 %Y A276469 Cf. A253235 (numbers m such that T(m,j) are all 1's), A276628 (composites m such that T(m,j) are not all 1's). %K A276469 nonn,tabl %O A276469 1,8 %A A276469 _Peter A. Lawrence_, Sep 04 2016 %E A276469 a(1) corrected by _Jinyuan Wang_, Jul 09 2020