cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276475 a(n) = ((sqrt(2); sqrt(2))_n - (-sqrt(2); -sqrt(2))_n)/(2*sqrt(2)), where (q; q)_n is the q-Pochhammer symbol.

Original entry on oeis.org

0, -1, 1, 3, -9, -69, 483, 5355, -80325, -2081205, 64517355, 2738408715, -172519749045, -17158004483445, 2179066569397515, 365466952872801675, -93194072982564427125, -36694334101466364023925, 18750804725849312016225675
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 12 2016

Keywords

Comments

The q-Pochhammer symbol (q; q)n = Product{k=1..n} (1 - q^k).

Crossrefs

Programs

  • Mathematica
    Round@Table[(QPochhammer[Sqrt[2], Sqrt[2], n] - QPochhammer[-Sqrt[2], -Sqrt[2], n])/(2 Sqrt[2]), {n, 0, 20}]

Formula

(sqrt(2); sqrt(2))_n = A276474(n) + a(n)*sqrt(2).
(-sqrt(2); -sqrt(2))_n = A276474(n) - a(n)*sqrt(2).