This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276477 #29 Jul 04 2023 12:28:06 %S A276477 2,2,1,4,3,5,7,8,12,15,20,27,35,47,62,82,109,144,191,253,335,444,588, %T A276477 779,1032,1367,1811,2399,3178,4210,5577,7388,9787,12965,17175,22752, %U A276477 30140,39927,52892,70067,92819,122959,162886,215778,285845,378664,501623,664509 %N A276477 a(n) = a(n-2) + a(n-3) for n >= 3, with a(0) = a(1) = 2, a(2) = 1. %C A276477 Padovan-like sequence linked to Perrin sequence. %H A276477 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1). %F A276477 a(n) = A001608(n) + A084338(n-7). %F A276477 G.f.: (x^2-2*x-2)/(x^3+x^2-1). %t A276477 RecurrenceTable[{a[n] == a[n - 2] + a[n - 3], a[1] == a[2] == 2, a[3] == 1}, a, {n, 42}] %t A276477 CoefficientList[Series[(x^2 - 2 x - 2)/(x^3 + x^2 - 1), {x, 0, 41}], x] (* _Michael De Vlieger_, Sep 06 2016 *) %t A276477 LinearRecurrence[{0, 1, 1}, {2, 2, 1}, 60] (* _Vincenzo Librandi_, Sep 10 2016 *) %o A276477 (PARI) x='x+O('x^99); Vec((x^2-2*x-2)/(x^3+x^2-1)) \\ _Altug Alkan_, Sep 10 2016 %o A276477 (Magma) I:=[2,2,1]; [n le 3 select I[n] else Self(n-2)+Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Sep 10 2016 %Y A276477 Cf. A001608, A084338. %K A276477 nonn,easy %O A276477 0,1 %A A276477 _Nicolas Bègue_, Sep 04 2016