This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276479 #23 Jan 07 2025 16:58:18 %S A276479 0,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,0,2,0,1,1,0,0,2,0,0,1,1,0,2,0,1,0,0, %T A276479 1,3,0,0,0,2,0,2,0,1,2,0,0,3,1,1,1,1,0,3,1,3,1,1,0,3,0,1,2,2,1,2,0,1, %U A276479 1,2,0,4,0,1,2,2,1,2,0,3,2,1,0,4,1,1,1 %N A276479 a(n) = floor(Sum_{d|n} 0.d). %C A276479 Here 0.d means the decimal fraction obtained by writing d after the decimal point, e.g. 0.12 = 12/100 = 3/25. %C A276479 The first few values of Sum_{d|n} 0.d are: 1/10, 3/10, 2/5, 7/10, 3/5, 6/5, 4/5, 3/2, 13/10, 9/10, 21/100, 43/25, ... %C A276479 See A276480(n) = the smallest number k such that floor(Sum_{d|k} 0.d) = n. %H A276479 Jaroslav Krizek, <a href="/A276479/b276479.txt">Table of n, a(n) for n = 1..1000</a> %F A276479 a(n) = floor(A276466(n)/A276467(n)). %e A276479 For n=12: a(12) = floor(Sum_{d|12} 0.d) = floor(0.1 + 0.2 + 0.3 + 0.4 + 0.6 + 0.12 = 0.72) = floor(172/100) = floor(43/25) = 1. %t A276479 Table[Floor@ Total@ (#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ n, {n, 120}] (* _Michael De Vlieger_, Sep 06 2016 *) %o A276479 (Magma) [Floor(&+[d / (10^(#Intseq(d))): d in Divisors(n)]): n in [1..1000]]; %o A276479 (PARI) a(n) = floor(sumdiv(n, d, d/10^(#Str(d)))); \\ _Michel Marcus_, Sep 05 2016 %o A276479 (Python) %o A276479 from fractions import Fraction %o A276479 from sympy import divisors %o A276479 def A276479(n): %o A276479 return sum(Fraction(d,10**len(str(d))) for d in divisors(n)).__floor__() # _Chai Wah Wu_, Sep 08 2016 %Y A276479 Cf. A276466, A276467, A276480. %K A276479 nonn,base %O A276479 1,18 %A A276479 _Jaroslav Krizek_, Sep 05 2016