This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276488 #20 Sep 11 2022 09:35:49 %S A276488 1,2,8,84,130,288,856,1034,1230,2568,11200,36565,41509,81536,212586, %T A276488 409541,516368,521248,984064,1771007,5835276,6230310,11951289, %U A276488 12298144,16284017,32568034,32655554,39382944,69585548,69656573,101118154,309345058,384373140,1165237916,2623448060 %N A276488 Numbers k that divide A003714(k). %C A276488 Corresponding Fibbinary numbers are 1, 2, 16, 336, 650, 2304, 10272, ... %C A276488 Next term > 2^32. - _Joerg Arndt_, Sep 05 2016 %e A276488 84 = Fibonacci(10) + Fibonacci(8) + Fibonacci(6) and 84 divides A003714(84) = 2^8 + 2^6 + 2^4 = 336. %o A276488 (C++) %o A276488 #include <iostream> %o A276488 typedef unsigned long ulong; %o A276488 ulong next_fibrep(ulong x) %o A276488 { %o A276488 ulong y = x | (x>>1); %o A276488 ulong z = y + 1; %o A276488 z = z & -z; %o A276488 x ^= z; %o A276488 x &= ~(z-1); %o A276488 return x; %o A276488 } %o A276488 int main() %o A276488 { %o A276488 ulong n = 0; %o A276488 ulong f = 0; %o A276488 do %o A276488 { %o A276488 n += 1; %o A276488 f = next_fibrep(f); %o A276488 if ( f % n == 0 ) %o A276488 { %o A276488 std::cout << n << ", "; %o A276488 std::cout << std::flush; %o A276488 } %o A276488 } %o A276488 while ( n <= (1UL << 32) ); %o A276488 std::cout << std::endl; %o A276488 } // _Joerg Arndt_, Sep 05 2016 %Y A276488 Cf. A003714, A357073. %K A276488 nonn %O A276488 1,2 %A A276488 _Altug Alkan_, Sep 05 2016 %E A276488 Terms 2568 and beyond from _Joerg Arndt_, Sep 05 2016