cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276491 Expansion of q*Product_{k>=1} (1-q^(2*k))^2*(1-q^(10*k))^2.

This page as a plain text file.
%I A276491 #58 Nov 17 2022 10:02:17
%S A276491 1,0,-2,0,-1,0,2,0,1,0,0,0,2,0,2,0,-6,0,-4,0,-4,0,6,0,1,0,4,0,6,0,-4,
%T A276491 0,0,0,-2,0,2,0,-4,0,6,0,-10,0,-1,0,-6,0,-3,0,12,0,-6,0,0,0,8,0,12,0,
%U A276491 2,0,2,0,-2,0,2,0,-12,0,-12,0,2,0,-2,0,0,0,8,0,-11,0,6,0,6,0,-12,0,-6,0,4,0,8,0,4,0,2,0,0,0,6,0,14,0,4,0,-6,0,2,0,-4,0,-6,0,-6,0,2,0,-12,0,-11,0,-12,0,-1,0,2,0,20,0,0,0,-8,0,-4
%N A276491 Expansion of q*Product_{k>=1} (1-q^(2*k))^2*(1-q^(10*k))^2.
%C A276491 Multiplicative. See A030205 for formula. - _Andrew Howroyd_, Aug 05 2018
%H A276491 Seiichi Manyama, <a href="/A276491/b276491.txt">Table of n, a(n) for n = 1..1000</a>
%H A276491 Yves Martin and Ken Ono, <a href="http://dx.doi.org/10.1090/S0002-9939-97-03928-2">Eta-Quotients and Elliptic Curves</a>, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
%F A276491 a(2n-1) = A030205(n-1), a(2n) = 0 for n > 0.
%F A276491 G.f.: (eta(x^2) * eta(x^10))^2. - _Andrew Howroyd_, Aug 05 2018
%F A276491 Euler transform of period 10 sequence [0, -2, 0, -2, 0, -2, 0, -2, 0, -4, ...]. - _Georg Fischer_, Nov 17 2022
%t A276491 QPochhammer[x^2]^2*QPochhammer[x^10]^2 + O[x]^100 // CoefficientList[#, x]& (* _Jean-François Alcover_, Sep 19 2019 *)
%o A276491 (PARI) seq(n)={Vec((eta(x^2 + O(x*x^n)) * eta(x^10 + O(x*x^n)))^2)} \\ _Andrew Howroyd_, Aug 05 2018
%Y A276491 Cf. A030205, A272207, A276030.
%K A276491 sign,mult
%O A276491 1,3
%A A276491 _Seiichi Manyama_, Sep 10 2016