A276502 Least k > 0 such that A045876(n) divides A045876(n*10^k).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6
Offset: 1
Examples
a(10) = 2 because A045876(10) = 1+10 = 11 does not divide A045876(100) = 1+10+100 = 111 and 11 divides A045876(1000) = 1+10+100+1000 = 1111.
Crossrefs
Cf. A045876.
Programs
-
Mathematica
A045876[n_] := Total[FromDigits /@ Permutations[IntegerDigits[n]]]; a[n_] := For[k = 1, True, k++, If[Divisible[A045876[n*10^k], A045876[n]], Return[k] ] ]; Array[a, 101] (* Jean-François Alcover, Jul 26 2017 *)
-
PARI
A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!); A055642(n) = #Str(n); A007953(n) = sumdigits(n); A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n)); a(n) = {my(k = 1); while (A045876(n*(10^k)) % A045876(n), k++); k; }
Comments