A276590 Pandigital numbers n such that sum of all permutations of digits of n is also a pandigital number. Sequence lists the least ones of corresponding permutational classes.
10234567889, 100223456789, 100234566789, 100234567889, 101234556789, 101234567789, 102234456789, 102234566789, 102334556789, 102334567899, 102344456789, 102344567889, 102345567789, 102345666789, 102345677789, 102345678899, 1000223456789, 1000234456789, 1000234566789
Offset: 1
Examples
100223456789 is a term because A045876(100223456789) = 52113599999947886400 is pandigital.
Links
- Robert Israel, Table of n, a(n) for n = 1..1557
Programs
-
Maple
pandig:= n -> evalb(nops(convert(convert(n,base,10),set))=10): sump:= proc(x) local L, D, n, M, s, j; L:= convert(x, base, 10); D:= [seq(numboccur(j, L), j=0..9)]; n:= nops(L); M:= n!/mul(d!, d=D); s:= add(j*D[j+1], j=0..9); (10^n-1)*M/9/n*s end proc: n0:= 1023456789: rep:= proc(n) local L,n0,i; L:= sort(convert(n,base, 10)); n0:= numboccur(0, L); L:= subsop(1=1,n0+1=0,L); add(L[-i-1]*10^(i),i=0..nops(L)-1); end proc: sort(convert(map(rep, select(pandig @ sump, {seq(seq(n0*10^d+x,x=0..10^d-1),d=0..3)})),list));
Comments